This thesis presents the findings of a comprehensive characterization study on GaN-based, gate-scaled HEMTs (with Lg < 0.15 µm) for RF applications. The investigation considers performance, stability, and reliability aspects. Specifically, static and dynamic measurements were conducted for the devices under test to assess the influence of short-channel effects and deep-level traps on their characteristics. This involved double-pulse measurements both in OFF and semi-ON state stress and transient measurements. The observed results are compared with those reported in the literature to determine the nature and location of traps responsible for performance variations. In the end stress test were performed to investigate the reliability of the devices. This research contributes to a deeper understanding of the underlying mechanisms and provides valuable insights for the optimization of future GaN-based device designs.
This thesis presents the findings of a comprehensive characterization study on GaN-based, gate-scaled HEMTs (with Lg < 0.15 µm) for RF applications. The investigation considers performance, stability, and reliability aspects. Specifically, static and dynamic measurements were conducted for the devices under test to assess the influence of short-channel effects and deep-level traps on their characteristics. This involved double-pulse measurements both in OFF and semi-ON state stress and transient measurements. The observed results are compared with those reported in the literature to determine the nature and location of traps responsible for performance variations. In the end stress test were performed to investigate the reliability of the devices. This research contributes to a deeper understanding of the underlying mechanisms and provides valuable insights for the optimization of future GaN-based device designs.
Device physics and failure mechanisms of deep submicron gate GaN HEMTs for microwave and millimeter-wave applications
CARLOTTO, ANDREA
2022/2023
Abstract
This thesis presents the findings of a comprehensive characterization study on GaN-based, gate-scaled HEMTs (with Lg < 0.15 µm) for RF applications. The investigation considers performance, stability, and reliability aspects. Specifically, static and dynamic measurements were conducted for the devices under test to assess the influence of short-channel effects and deep-level traps on their characteristics. This involved double-pulse measurements both in OFF and semi-ON state stress and transient measurements. The observed results are compared with those reported in the literature to determine the nature and location of traps responsible for performance variations. In the end stress test were performed to investigate the reliability of the devices. This research contributes to a deeper understanding of the underlying mechanisms and provides valuable insights for the optimization of future GaN-based device designs.File | Dimensione | Formato | |
---|---|---|---|
Carlotto_Andrea.pdf
accesso aperto
Dimensione
4.38 MB
Formato
Adobe PDF
|
4.38 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/50762