-The development of a new artificial heart valve with high durability and safety has remained a challenge since the first mechanical heart valve appeared on the market 65 years ago. Recent advances in polymeric materials have opened new perspectives to overcome the major limitations of mechanical and tissue heart valves, such as dysfunction, tissue degradation, calcification, immunogenic potential, and high risk of thrombosis. It can be assumed that compared with mechanical valves, polymeric heart valves can more accurately replicate the mechanical behavior at the tissue level of natural valves. This thesis work summarizes the evolution of polymeric heart valves and the latest strategies for their development and production. Biocompatibility and durability tests of the polymeric materials used are also reviewed and recent advances, including early human clinical trials, are presented. Promising new functional polymers, nanocomposite biomaterials, and polymer valve designs are discussed. The use of additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools has opened new perspectives for polymeric heart valves.

-Lo sviluppo di una nuova valvola cardiaca artificiale con elevate durabilità e sicurezza è rimasto una sfida sin dalla comparsa della prima valvola cardiaca meccanica sul mercato 65 anni fa. Progressi recenti nei materiali polimerici hanno aperto nuove prospettive per superare le principali limitazioni delle valvole cardiache meccaniche e tessutali, come la disfunzione, la degradazione del tessuto, la calcificazione, il potenziale immunogenico e il rischio elevato di trombosi. Si può presumere che rispetto alle meccaniche, le valvole cardiache polimeriche possano replicare in modo più accurato il comportamento meccanico a livello tessutale delle valvole naturali. Questo lavoro di tesi riassume l’evoluzione delle valvole cardiache polimeriche e le più recenti strategie per il loro sviluppo e produzione. Vengono esaminati anche i test di biocompatibilità e durabilità dei materiali polimerici utilizzati e presentati i progressi più recenti, inclusi i primi trial clinici umani. Si discutono nuovi promettenti polimeri funzionali, biomateriali nanocompositi e design delle valvole polimeriche. L’utilizzo della fabbricazione additiva, della nanotecnologia, del controllo dell’anisotropia, dell’apprendimento automatico e di avanzati strumenti di modellazione ha aperto nuove prospettive per le valvole cardiache polimeriche.

Valvole cardiache polimeriche: vantaggi e prospettive future

DELLAI, CHIARA
2022/2023

Abstract

-The development of a new artificial heart valve with high durability and safety has remained a challenge since the first mechanical heart valve appeared on the market 65 years ago. Recent advances in polymeric materials have opened new perspectives to overcome the major limitations of mechanical and tissue heart valves, such as dysfunction, tissue degradation, calcification, immunogenic potential, and high risk of thrombosis. It can be assumed that compared with mechanical valves, polymeric heart valves can more accurately replicate the mechanical behavior at the tissue level of natural valves. This thesis work summarizes the evolution of polymeric heart valves and the latest strategies for their development and production. Biocompatibility and durability tests of the polymeric materials used are also reviewed and recent advances, including early human clinical trials, are presented. Promising new functional polymers, nanocomposite biomaterials, and polymer valve designs are discussed. The use of additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools has opened new perspectives for polymeric heart valves.
2022
Polymeric heart valves: advantages and future perspectives
-Lo sviluppo di una nuova valvola cardiaca artificiale con elevate durabilità e sicurezza è rimasto una sfida sin dalla comparsa della prima valvola cardiaca meccanica sul mercato 65 anni fa. Progressi recenti nei materiali polimerici hanno aperto nuove prospettive per superare le principali limitazioni delle valvole cardiache meccaniche e tessutali, come la disfunzione, la degradazione del tessuto, la calcificazione, il potenziale immunogenico e il rischio elevato di trombosi. Si può presumere che rispetto alle meccaniche, le valvole cardiache polimeriche possano replicare in modo più accurato il comportamento meccanico a livello tessutale delle valvole naturali. Questo lavoro di tesi riassume l’evoluzione delle valvole cardiache polimeriche e le più recenti strategie per il loro sviluppo e produzione. Vengono esaminati anche i test di biocompatibilità e durabilità dei materiali polimerici utilizzati e presentati i progressi più recenti, inclusi i primi trial clinici umani. Si discutono nuovi promettenti polimeri funzionali, biomateriali nanocompositi e design delle valvole polimeriche. L’utilizzo della fabbricazione additiva, della nanotecnologia, del controllo dell’anisotropia, dell’apprendimento automatico e di avanzati strumenti di modellazione ha aperto nuove prospettive per le valvole cardiache polimeriche.
valvole cardiache
valvole polimeriche
biomateriali
durabilità
emocompatibilità
File in questo prodotto:
File Dimensione Formato  
Dellai_Chiara.pdf

accesso aperto

Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/52937