In this dissertation, we re-examine the foundational theory of Fourier Transform Spectroscopy (FTS) within the fields of astronomy and astrophysics, focusing on the intricate relationship between coherence, Fourier analysis, and interferometry. The aim is to present FTS as a pivotal element in advanced techniques and complex phenomena, highlighting its foundational aspects, limitations, and current prospects in research. This work provides both a theoretical analysis, interpreting the interferogram as a signal's autocorrelation function and its crucial link to the power spectrum, and a practical examination, scrutinizing critical processes like apodization and sampling. We delve into Digital Signal Processing (DSP) theory for the implementation of efficient algorithms, such as the Fast Fourier Transform (FFT), and place particular emphasis on the need for astrophysicists to understand the workings of commonly used "black-box" programs and the importance of characterizing coherence among electromagnetic fields at various orders, considering the vector nature of radiation. Furthermore, we investigate the role of FFT in the context of emerging technologies, discussing how the advent and integration of Artificial Intelligence (AI) in astronomy and physics provide opportunities to facilitate the management and analysis of large volumes of astronomical data, pattern recognition, and classification of astronomical objects, thereby enhancing observational efficiency, enabling more accurate and sophisticated interpretation of phenomena, and accelerating scientific discovery. We conclude that AI has the potential to unveil the fundamental laws governing the universe. Grounded in an extensive and reasoned bibliographic analysis of existing scientific literature, we propose a critical and holistic interpretation of the subject. While the concepts and tools discussed are applicable to a broader range of applications, this thesis predominantly aligns with modern radioastronomy, where FTS offers significant advantages over traditional spectrographs, pushing the boundaries of research beyond current experimental limits.
In questo lavoro, rielaboriamo la teoria di base della Spettroscopia a Trasformata di Fourier (FTS) nell’ambito dell’astronomia e dell’astrofisica, focalizzandoci sulla stretta relazione tra la coerenza, l’analisi di Fourier e l’interferometria. L’obiettivo è presentare, in modo chiaro e organizzato, la FTS come fulcro di tecniche avanzate e di fenomeni complessi, evidenziando le connessioni tra i suoi pilastri, nonché i limiti e le prospettive che attualmente offre alla ricerca. Si fornisce un’analisi sia teorica, interpretando l’interferogramma come funzione di autocorrelazione del segnale e il suo cruciale rapporto con lo spettro di potenza, sia pratica, esaminando processi critici come l’apodizzazione e il campionamento. Entriamo nei meriti della teoria dell’Elaborazione del Segnale Digitale (DSP) per l’implementazione di algoritmi efficienti come la Trasformata Veloce di Fourier (FFT). Un’enfasi particolare viene posta sulla necessità per i fisici-astronomi di comprendere il funzionamento dei programmi spesso utilizzati in ambito applicativo come "scatole nere" e l’importanza di caratterizzare la coerenza tra campi elettromagnetici a diversi ordini tenendo conto della natura vettoriale della radiazione. Si indaga inoltre il ruolo della FFT alla luce delle tecnologie emergenti discutendo come l’avvento e l’integrazione dell’Intelligenza Artificiale (AI) nel campo dell’astronomia e della fisica abbia fatto emergere l’opportunità di facilitare la gestione e nell’analisi di grandi volumi di dati astronomici, il riconoscimento di pattern e la classificazione degli oggetti astronomici, migliorando l’efficienza delle osservazioni, permettendo una più accurata e sofisticata interpretazione dei fenomeni e, accelerando il processo di scoperta scientifica. Si inferisce infine che l’AI possa potenzialmente svelare le leggi fondamentali che governano l’universo. Basandoci su un’ampia e ragionata analisi bibliografica della letteratura scientifica esistente, proponiamo una chiave di lettura critica e olistica della tematica. Sebbene i concetti e gli strumenti che tratteremo trovino impiego in una vastità molto maggiore di applicazioni, questa tesi si iscriverà preminentemente nel contesto della radioastronomia moderna, dove la FTS risulta particolarmente vantaggiosa rispetto agli spettrografi tradizionali, spingendo i confini della ricerca oltre gli attuali limiti sperimentali.
Tecniche di interferometria infrarossa a trasformata di Fourier
DE GUGLIELMO, CHIARA
2022/2023
Abstract
In this dissertation, we re-examine the foundational theory of Fourier Transform Spectroscopy (FTS) within the fields of astronomy and astrophysics, focusing on the intricate relationship between coherence, Fourier analysis, and interferometry. The aim is to present FTS as a pivotal element in advanced techniques and complex phenomena, highlighting its foundational aspects, limitations, and current prospects in research. This work provides both a theoretical analysis, interpreting the interferogram as a signal's autocorrelation function and its crucial link to the power spectrum, and a practical examination, scrutinizing critical processes like apodization and sampling. We delve into Digital Signal Processing (DSP) theory for the implementation of efficient algorithms, such as the Fast Fourier Transform (FFT), and place particular emphasis on the need for astrophysicists to understand the workings of commonly used "black-box" programs and the importance of characterizing coherence among electromagnetic fields at various orders, considering the vector nature of radiation. Furthermore, we investigate the role of FFT in the context of emerging technologies, discussing how the advent and integration of Artificial Intelligence (AI) in astronomy and physics provide opportunities to facilitate the management and analysis of large volumes of astronomical data, pattern recognition, and classification of astronomical objects, thereby enhancing observational efficiency, enabling more accurate and sophisticated interpretation of phenomena, and accelerating scientific discovery. We conclude that AI has the potential to unveil the fundamental laws governing the universe. Grounded in an extensive and reasoned bibliographic analysis of existing scientific literature, we propose a critical and holistic interpretation of the subject. While the concepts and tools discussed are applicable to a broader range of applications, this thesis predominantly aligns with modern radioastronomy, where FTS offers significant advantages over traditional spectrographs, pushing the boundaries of research beyond current experimental limits.File | Dimensione | Formato | |
---|---|---|---|
DeGuglielmo_Chiara.pdf
accesso aperto
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/61023