In this paper it is described the Gauss's Method, invented and described by the homonymous mathematician in his Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium[4], whose purpose is to determine the orbit of a celestial body starting from the data obtained through only three observations. In the first chapter the three Kepler's Laws and their implications are analyzed in order to understand the motion of a body which is supposed subject to the only force of gravity of another one, usually much more massive than the first. This chapter turns out to be a necessary theoretical foundation since the Gauss's Method is based on the principles of classic mechanics, while ignoring (since at time they were still unknown) the effects concerning relativity. The second chapter opens with a brief explanation of the circumstances that brought to the necessity to develop such method; there follows a detailed dissertation of the method, divided in steps, so that it becomes easier to discern every single operation, present eventual further hypothesis and the corresponding consequences. In particular, it is given an insight on the analysis of the orders of magnitude of the variables involved, essential to evaluate the quality of the approximation obtained from an iterative method. This exposition faithfully follows [2] as listed in the bibliography. Finally, the third chapter is dedicated to discuss the efficiency of the method and the limits in which it can be applied, furthermore giving a hint of possible corrections and improvements developed over time.
In questo elaborato viene descritto il metodo di Gauss, inventato e descritto dall'omonimo matematico nel suo Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium[4], utilizzato per determinare l'orbita di un corpo celeste a partire dai dati ottenibili da sole tre osservazioni. Nel primo capitolo vengono analizzate le tre leggi di Keplero e le implicazioni che da esse derivano allo scopo di comprendere il moto di un corpo idealmente soggetto alla sola forza gravitazionale di un altro, tendenzialmente molto più massiccio del primo. Tale capitolo risulta essere una necessaria base teorica in quanto il metodo di Gauss si fonda sui principi della meccanica classica, ignorando (in quanto all'epoca ancora ignoti) i fenomeni legati alla relatività. Il secondo capitolo si apre con una breve spiegazione delle circostanze che hanno condotto alla necessità di sviluppare tale metodo; si procede poi con la trattazione dettagliata di quest'ultimo, suddiviso in più parti in modo da distinguere chiaramente ogni passaggio, esporre eventuali ipotesi necessarie e le relative conseguenze. In particolare si fornisce un approfondimento sull'analisi degli ordini di grandezza delle variabili in gioco, necessaria a valutare la bontà dell'approssimazione ottenuta da un metodo di tipo iterativo. Tale esposizione segue fedelmente [2], riportato in bibliografia. Infine nel terzo capitolo si discute l'efficacia del metodo e i suoi limiti di applicazione, accennando anche a possibili correzioni e miglioramenti sviluppati nel tempo.
Il metodo di Gauss per la determinazione orbitale
SACCANI, LUCA
2023/2024
Abstract
In this paper it is described the Gauss's Method, invented and described by the homonymous mathematician in his Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium[4], whose purpose is to determine the orbit of a celestial body starting from the data obtained through only three observations. In the first chapter the three Kepler's Laws and their implications are analyzed in order to understand the motion of a body which is supposed subject to the only force of gravity of another one, usually much more massive than the first. This chapter turns out to be a necessary theoretical foundation since the Gauss's Method is based on the principles of classic mechanics, while ignoring (since at time they were still unknown) the effects concerning relativity. The second chapter opens with a brief explanation of the circumstances that brought to the necessity to develop such method; there follows a detailed dissertation of the method, divided in steps, so that it becomes easier to discern every single operation, present eventual further hypothesis and the corresponding consequences. In particular, it is given an insight on the analysis of the orders of magnitude of the variables involved, essential to evaluate the quality of the approximation obtained from an iterative method. This exposition faithfully follows [2] as listed in the bibliography. Finally, the third chapter is dedicated to discuss the efficiency of the method and the limits in which it can be applied, furthermore giving a hint of possible corrections and improvements developed over time.File | Dimensione | Formato | |
---|---|---|---|
Saccani_Luca.pdf
accesso aperto
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/63301