Some of the largest state-of-the-art neutrino experiments use liquid scintillator or water as target for the neutrino interactions. These detectors use complementary detection techniques: light produced by de-excitation of the liquid scintillator in the former and Cherenkov photons in the latter. Both detection techniques are well established and used (see for instance T2K [1] and Super-K [2] for the water Cherenkov detectors, and Borexino [3] and JUNO [4] for the liquid scintillator experiments). Accurate measurement performed with liquid scintillators show that a small component of Cherenkov light is always present in liquid scintillator detectors, but its contribution is usually very small and difficult to disentangle from the dominant scintillator part [5]. In the present thesis we plan to investigate the properties of a novel organic liquid scintillator with a slow light emission and with an enhanced Cherenkov component. Since the light yields of Cherenkov emission and scintillation emission have different dependencies on charged particle's kinetic energy, and the dependencies vary with particle type, they allow to develop new and intriguing particle identification approaches for future neutrino physics and proton decay experiments. References [1] K. Abe et al., T2K Collaboration, Nucl. Instr. Meth. A 659 (2011) 106 [2] S. Fukuda, et al, Super Kamokande Collaboration, Nucl. Instr. Meth. A 501 (2003) 418 [3] G. Alimonti et al. Borexino Collaboration, Astropart. Phys. 16 (2002) 205 [4] A. Abusleme et al., JUNO Collaboration, JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123 (2022) [5] M. Li at al., Separation of scintillation and Cherenkov lights in linear alkyl benzene, Nucl. Instr. Meth. A 830 (2016) 303

Alcuni dei più grandi esperimenti all'avanguardia di neutrini utilizzano scintillatore liquido o acqua come bersaglio per le interazioni tra neutrini. Questi rivelatori usano tecniche di rilevazione complementare: la luce prodotta dalla diseccitazione dello scintillatore liquido e poi i fotoni Cherenkov. Entrambe le tecniche di rilevazioni sono consolidate e molto usate (per esempio T2K[1] e SuperK[2] per i rilevatori Cherenkov ad acqua e Borexino[3] e JUNO[4] per gli esperimenti con scintillatore liquido). Misurazioni accurate eseguite con scintillatori liquidi mostrano che una piccola componente della luce Cherenkov è sempre presente nei rilevatori con scintillatore liquido, ma il suo contributo è solitamente molto piccolo e difficile da distinguere dalla parte dominante dello scintillatore[5]. Nella presente tesi si propone di investigare le proprietà di un nuovo scintillatore liquido organico con una lenta emissione di luce ed una componente Cherenkov potenziata. Dato che la resa di luce delle emissioni Cherenkov e l'emissione di scintillazione hanno diverse dipendenze dall'energia cinetica delle particelle cariche, e le dipendenze variano con il tipo di particella, queste permettono di sviluppare nuovi e interessanti approcci di identificazione delle particelle per futuri esperimenti di fisica dei neutrini e decadimento dei protoni. Riferimenti [1] K. Abe et al., T2K Collaboration, Nucl. Instr. Meth. A 659 (2011) 106 [2] S. Fukuda, et al, Super Kamokande Collaboration, Nucl. Instr. Meth. A 501 (2003) 418 [3] G. Alimonti et al. Borexino Collaboration, Astropart. Phys. 16 (2002) 205 [4] A. Abusleme et al., JUNO Collaboration, JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123 (2022) [5] M. Li at al., Separation of scintillation and Cherenkov lights in linear alkyl benzene, Nucl. Instr. Meth. A 830 (2016) 303

Calibrazione in energia dell’apparato su fascio per lo studio dello scintillatore liquido di JUNO

RASERA, BENEDETTA
2023/2024

Abstract

Some of the largest state-of-the-art neutrino experiments use liquid scintillator or water as target for the neutrino interactions. These detectors use complementary detection techniques: light produced by de-excitation of the liquid scintillator in the former and Cherenkov photons in the latter. Both detection techniques are well established and used (see for instance T2K [1] and Super-K [2] for the water Cherenkov detectors, and Borexino [3] and JUNO [4] for the liquid scintillator experiments). Accurate measurement performed with liquid scintillators show that a small component of Cherenkov light is always present in liquid scintillator detectors, but its contribution is usually very small and difficult to disentangle from the dominant scintillator part [5]. In the present thesis we plan to investigate the properties of a novel organic liquid scintillator with a slow light emission and with an enhanced Cherenkov component. Since the light yields of Cherenkov emission and scintillation emission have different dependencies on charged particle's kinetic energy, and the dependencies vary with particle type, they allow to develop new and intriguing particle identification approaches for future neutrino physics and proton decay experiments. References [1] K. Abe et al., T2K Collaboration, Nucl. Instr. Meth. A 659 (2011) 106 [2] S. Fukuda, et al, Super Kamokande Collaboration, Nucl. Instr. Meth. A 501 (2003) 418 [3] G. Alimonti et al. Borexino Collaboration, Astropart. Phys. 16 (2002) 205 [4] A. Abusleme et al., JUNO Collaboration, JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123 (2022) [5] M. Li at al., Separation of scintillation and Cherenkov lights in linear alkyl benzene, Nucl. Instr. Meth. A 830 (2016) 303
2023
Energy calibration of the JUNO liquid scintillator test beam setup
Alcuni dei più grandi esperimenti all'avanguardia di neutrini utilizzano scintillatore liquido o acqua come bersaglio per le interazioni tra neutrini. Questi rivelatori usano tecniche di rilevazione complementare: la luce prodotta dalla diseccitazione dello scintillatore liquido e poi i fotoni Cherenkov. Entrambe le tecniche di rilevazioni sono consolidate e molto usate (per esempio T2K[1] e SuperK[2] per i rilevatori Cherenkov ad acqua e Borexino[3] e JUNO[4] per gli esperimenti con scintillatore liquido). Misurazioni accurate eseguite con scintillatori liquidi mostrano che una piccola componente della luce Cherenkov è sempre presente nei rilevatori con scintillatore liquido, ma il suo contributo è solitamente molto piccolo e difficile da distinguere dalla parte dominante dello scintillatore[5]. Nella presente tesi si propone di investigare le proprietà di un nuovo scintillatore liquido organico con una lenta emissione di luce ed una componente Cherenkov potenziata. Dato che la resa di luce delle emissioni Cherenkov e l'emissione di scintillazione hanno diverse dipendenze dall'energia cinetica delle particelle cariche, e le dipendenze variano con il tipo di particella, queste permettono di sviluppare nuovi e interessanti approcci di identificazione delle particelle per futuri esperimenti di fisica dei neutrini e decadimento dei protoni. Riferimenti [1] K. Abe et al., T2K Collaboration, Nucl. Instr. Meth. A 659 (2011) 106 [2] S. Fukuda, et al, Super Kamokande Collaboration, Nucl. Instr. Meth. A 501 (2003) 418 [3] G. Alimonti et al. Borexino Collaboration, Astropart. Phys. 16 (2002) 205 [4] A. Abusleme et al., JUNO Collaboration, JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123 (2022) [5] M. Li at al., Separation of scintillation and Cherenkov lights in linear alkyl benzene, Nucl. Instr. Meth. A 830 (2016) 303
Neutrinos
Liquid Scintillator
Light emission
Cherenkov light
File in questo prodotto:
File Dimensione Formato  
Rasera_Benedetta.pdf

accesso aperto

Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/64683