This paper aims to examine and illustrate the use of numerical integration procedures, known as symplectic, for the analysis of dynamic systems. These procedures keep the first integrals of motion, such as mechanical energy, constant, ensuring better stability and accuracy in calculations over long periods. The main objective is to provide an overview of these techniques and their impact on the analysis of dynamic systems, thus offering a solid basis for future insights and practical applications.
Questo documento si propone di esaminare e illustrare l'uso di procedure numeriche d'integrazione, note come simplettiche, per l'analisi di sistemi dinamici. Tali procedure mantengono costanti gli integrali primi del moto, come l'energia meccanica, garantendo una migliore stabilità e accuratezza nei calcoli nei lunghi periodi. L'obiettivo principale è quello di fornire una panoramica di queste tecniche e del loro impatto sull'analisi dei sistemi dinamici, offrendo così una base solida per approfondimenti futuri e applicazioni pratiche.
Integrazione simplettica di sistemi hamiltoniani
GREGNANIN, MATTIA
2023/2024
Abstract
This paper aims to examine and illustrate the use of numerical integration procedures, known as symplectic, for the analysis of dynamic systems. These procedures keep the first integrals of motion, such as mechanical energy, constant, ensuring better stability and accuracy in calculations over long periods. The main objective is to provide an overview of these techniques and their impact on the analysis of dynamic systems, thus offering a solid basis for future insights and practical applications.File | Dimensione | Formato | |
---|---|---|---|
Gregnanin_Mattia.pdf
accesso aperto
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/72307