The bacterium Xylella fastidiosa emerged as a phytopathogen of global significance in 2013, when it was first linked to the olive disease known as “rapid olive tree desiccation” in Italy. Since then, its presence has been confirmed in Italy, France, and Spain, with multiple genotypes of the pathogen identified. This highlights its potential threat to agriculture across Europe and the Mediterranean basin. Despite over a century of research in the Americas, no effective therapeutic solutions have been developed to manage this disease. As an obligate parasite, X. fastidiosa depends on plants and insect vectors for its survival, and the epidemiology of each pathosystem is shaped by the ecological interactions between plants, pathogens, and vectors. These interactions are further influenced by biotic and abiotic factors, as well as the regulatory measures implemented by individual states (Anne et al., 2018). One of the key factors contributing to the threat posed by X. fastidiosa is its wide host range, which is facilitated by its high adaptability. In the genus Vitis, for example, the bacterium not only infects the European grapevine (Vitis vinifera) but also affects American species such as Vitis labrusca and Vitis riparia. In grapevines, the disease caused by X. fastidiosa is known as “Pierce’s disease,” which was first documented around 1880. In the United States, the disease has spread from Florida to California, posing a significant challenge to the country’s wine industry. Economic losses are estimated to reach as high as USD 30 billion (Sanscartier et al., 2012). In Southern California alone, Pierce’s disease has led to the decline of over 35,000 acres of vineyards, prompting producers to relocate to northern regions where climatic conditions are less conducive to the disease’s development (Galvez et al., 2010). To mitigate the impact of the disease, research efforts are increasingly focused on identifying genetic resistance mechanisms in grapevines. Interestingly, European vineyards have, so far, remained unaffected by X. fastidiosa. This is likely due to epidemiological factors such as the absence of suitable insect vectors and the less favorable environmental conditions in Europe. The spread of the bacterium is strongly influenced by subtropical climates, which support both the pathogen and its vectors (Anne et al., 2018). This thesis delves into the characteristics of X. fastidiosa, with a particular emphasis on its effects on grapevines and the disease dynamics of Pierce’s disease. The study examines natural and induced resistance mechanisms in grapevines and explores advanced biotechnological approaches aimed at achieving sustainable management of the pathogen. Among these methods are genetic engineering techniques and the development of inhibitory proteins, both of which hold promise for disease prevention and control in Europe.
Il batterio Xylella fastidiosa è riemerso come fitopatogeno di importanza mondiale nel 2013, quando è stato associato per la prima volta alla malattia dell’olivo in Italia denominata “disseccamento rapido dell’olivo”. In Italia, Francia e Spagna sono stati rilevati più genotipi di X. Fastidiosa. Pertanto, il batterio costituisce una minaccia per l’Europa e il bacino del Mediterraneo. Sebbene questo batterio sia studiato nelle Americhe da più di un secolo, non esistono soluzioni terapeutiche per contenere questa malattia. Poiché si tratta di un parassita obbligato di piante e insetti vettori, l'epidemiologia e la dinamica di ciascun patosistema sono distinte. Esse dipendono dall’interazione ecologica di piante, agenti patogeni e vettori e da come le interazioni sono influenzate da fattori biotici, abiotici e dalle decisioni regolamentative di ogni singolo stato (Anne et al., 2018). X. fastidiosa ha un ampio spettro di ospiti che è in grado di colpire grazie alla sua elevata capacità di adattamento. Per esempio, sul genere Vitis oltre ad attaccare la vite europea (V. vinifera), colpisce anche le specie americane V. labrusca e V. riparia. La malattia su vite è nota come “malattia di Pierce”, una malattia conosciuta dal 1880 circa e diffusa negli Stati Uniti, dalla Florida alla California, minacciando l'industria enologica del paese, con danni fino a 30 miliardi di dollari (Sanscartier et al., 2012). La malattia di Pierce ha causato il declino di oltre 35.000 acri di vigneti nel sud della California (Galvez et al., 2010), obbligando a spostare la produzione più a nord dove le condizioni climatiche sono meno favorevoli al suo sviluppo. Al fine di ridurre i danni sulle produzioni, gli studi sulle resistenze genetiche di Vitis a questa malattia sono destinati ad aumentare. Finora questo batterio non ha attaccato i vigneti europei probabilmente a causa di fattori epidemiologici (assenza di vettori) e grazie a condizioni ambientali sfavorevoli. Infatti la sua diffusione è favorita da condizioni climatiche subtropicali e da potenziali vettori collegati a questo clima (Anne et al., 2018). Dopo un’analisi approfondita delle caratteristiche dell’agente patogeno X. fastidiosa, la tesi analizza gli effetti della malattia su vite, con un focus specifico sulla malattia di Pierce. Successivamente sono approfonditi alcuni meccanismi di resistenza in vite, sia naturali che indotti. Con l’intento di delineare soluzioni sostenibili per la gestione del patogeno e la prevenzione della malattia in Europa, vengono analizzati metodi biotecnologici avanzati, inclusi l’impiego dell’ingegneria genetica e l’uso di proteine inibitrici.
Origine, diffusione e resistenza della vite alla malattia di Pierce
MUTTA, LORENZO
2024/2025
Abstract
The bacterium Xylella fastidiosa emerged as a phytopathogen of global significance in 2013, when it was first linked to the olive disease known as “rapid olive tree desiccation” in Italy. Since then, its presence has been confirmed in Italy, France, and Spain, with multiple genotypes of the pathogen identified. This highlights its potential threat to agriculture across Europe and the Mediterranean basin. Despite over a century of research in the Americas, no effective therapeutic solutions have been developed to manage this disease. As an obligate parasite, X. fastidiosa depends on plants and insect vectors for its survival, and the epidemiology of each pathosystem is shaped by the ecological interactions between plants, pathogens, and vectors. These interactions are further influenced by biotic and abiotic factors, as well as the regulatory measures implemented by individual states (Anne et al., 2018). One of the key factors contributing to the threat posed by X. fastidiosa is its wide host range, which is facilitated by its high adaptability. In the genus Vitis, for example, the bacterium not only infects the European grapevine (Vitis vinifera) but also affects American species such as Vitis labrusca and Vitis riparia. In grapevines, the disease caused by X. fastidiosa is known as “Pierce’s disease,” which was first documented around 1880. In the United States, the disease has spread from Florida to California, posing a significant challenge to the country’s wine industry. Economic losses are estimated to reach as high as USD 30 billion (Sanscartier et al., 2012). In Southern California alone, Pierce’s disease has led to the decline of over 35,000 acres of vineyards, prompting producers to relocate to northern regions where climatic conditions are less conducive to the disease’s development (Galvez et al., 2010). To mitigate the impact of the disease, research efforts are increasingly focused on identifying genetic resistance mechanisms in grapevines. Interestingly, European vineyards have, so far, remained unaffected by X. fastidiosa. This is likely due to epidemiological factors such as the absence of suitable insect vectors and the less favorable environmental conditions in Europe. The spread of the bacterium is strongly influenced by subtropical climates, which support both the pathogen and its vectors (Anne et al., 2018). This thesis delves into the characteristics of X. fastidiosa, with a particular emphasis on its effects on grapevines and the disease dynamics of Pierce’s disease. The study examines natural and induced resistance mechanisms in grapevines and explores advanced biotechnological approaches aimed at achieving sustainable management of the pathogen. Among these methods are genetic engineering techniques and the development of inhibitory proteins, both of which hold promise for disease prevention and control in Europe.File | Dimensione | Formato | |
---|---|---|---|
Mutta_Lorenzo.pdf
accesso riservato
Dimensione
4.48 MB
Formato
Adobe PDF
|
4.48 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/81961