This thesis focuses on the geometry and physics of General Relativity with the aim of formulating a rigorous definition of spacetime singularities. After establishing a solid mathematical framework in the first chapter and introducing Einstein's field equations in the second, the work analyzes the complexity of the problem of defining a singularity. It is demonstrated that more intuitive definitions, such as the simple removal of points or the divergence of curvature, are insufficient or ambiguous. The main conclusion is that the concept of b-incompleteness represents the most complete and physically meaningful definition of a singularity. Unlike geodesic incompleteness, which applies only to observers in free fall, b-incompleteness extends this criterion to any curve, capturing the idea that an observer's history, even an accelerating one, can abruptly end after a finite amount of proper time. This approach is robust and also applies to cases where the curvature remains finite, such as in the Taub-NUT spacetime, demonstrating that singularities can have a topological rather than a purely curvature-based nature.
Questa tesi si concentra sulla geometria e la fisica della Relatività Generale con l'obiettivo di formulare una definizione rigorosa delle singolarità spaziotemporali. Dopo aver stabilito un solido quadro matematico nel primo capitolo e aver introdotto le equazioni di campo di Einstein nel secondo, il lavoro analizza la complessità del problema di definire una singolarità. Viene dimostrato che le definizioni più intuitive, come la semplice rimozione di punti o la divergenza della curvatura, sono insufficienti o ambigue. La conclusione principale è che il concetto di b-incompletezza rappresenta la definizione più completa e fisicamente significativa di singolarità. A differenza dell'incompletezza geodetica, che si applica solo agli osservatori in caduta libera, la b-incompletezza estende il criterio a qualsiasi curva, catturando l'idea che la storia di un osservatore, anche se accelerato, possa terminare bruscamente dopo un tempo proprio finito. Questo approccio è robusto e si applica anche a casi in cui la curvatura rimane finita, come nello spaziotempo di Taub-NUT, dimostrando che le singolarità possono avere una natura topologica piuttosto che solo di curvatura.
Geometry of Exotic Universes
DE ANGELIS, ARIS
2024/2025
Abstract
This thesis focuses on the geometry and physics of General Relativity with the aim of formulating a rigorous definition of spacetime singularities. After establishing a solid mathematical framework in the first chapter and introducing Einstein's field equations in the second, the work analyzes the complexity of the problem of defining a singularity. It is demonstrated that more intuitive definitions, such as the simple removal of points or the divergence of curvature, are insufficient or ambiguous. The main conclusion is that the concept of b-incompleteness represents the most complete and physically meaningful definition of a singularity. Unlike geodesic incompleteness, which applies only to observers in free fall, b-incompleteness extends this criterion to any curve, capturing the idea that an observer's history, even an accelerating one, can abruptly end after a finite amount of proper time. This approach is robust and also applies to cases where the curvature remains finite, such as in the Taub-NUT spacetime, demonstrating that singularities can have a topological rather than a purely curvature-based nature.| File | Dimensione | Formato | |
|---|---|---|---|
|
Geometry_Of_Exotic_Universes_Aris_De_Angelis.pdf
accesso aperto
Dimensione
623.4 kB
Formato
Adobe PDF
|
623.4 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91424