Axions, particles that may be the light constituents of the galactic dark matter halo, interact very weakly with the known particles of the Standard Model. The interaction with the electromagnetic field is the most exploited in haloscopes – detectors in which these hypothetical particles are resonantly converted into cavity photons in the presence of an intense magnetic field. In these experiments, the acquired spectral data are validated a posteriori through Monte Carlo methods during the data analysis phase. The validation techniques for microwave cavity haloscopes can be enhanced by the injection of synthetic realistic axion signals. By analyzing the spectral characteristics of axions derived from Maxwell-Boltzmann velocity distribution in the galactic halo, it is possible to generate signals that accurately mimic the narrow and asymmetric shape of the expected spectral distribution. As the axions behave as a stochastic field, the signal can be generated by shaping the spectrum of white noise. This process is carried out through Digital Signal Processing techniques, in particular with circular convolution via Discrete Fourier Transform. Specific precautions allow to reduce the artifacts generated by this method and avoid the limitation imposed by the Nyquist Sampling Theorem. The digital signal is generated at low frequency and converted to analog using a Data Acquisition (DAQ) device; the upconversion to typical axion frequencies is then performed by means of a mixer. The injection of the synthetic axion signal into a microwave cavity allows then the study of the experimental setup’s response to these hypothetical particles.
Gli Assioni, particelle che potrebbero essere i costituenti leggeri dell’alone galattico di materia oscura, interagiscono molto debolmente con le particelle note del Modello Standard. L’interazione con il campo elettromagnetico è principalmente sfruttata negli aloscopi – rivelatori nei quali queste particelle ipotetiche sono convertite in modo risonante in fotoni di cavità in presenza di un campo magnetico intenso. In questi esperimenti, i dati acquisiti sono validati a posteriori attraverso metodi Monte Carlo durante la fase di analisi dati. Le tecniche di validazione per cavità a microonde di aloscopi possono essere migliorate con l’iniezione di segnali sintetici realistici di assioni. Analizzando le caratteristiche spettrali degli assioni derivate dalla distribuzione di Maxwell-Boltzamann per le velocità nell’alone galattico, è possibile generare un segnale sintetico che riproduce in modo accurato la forma stretta e asimmetrica della distribuzione spettrale attesa. Poiché l’assione si comporta come un campo stocastico, il segnale può essere generato a partire da uno spettro di un rumore bianco. Questo processo viene eseguito attraverso tecniche di processamento di segnali digitali, in particolare tramite convoluzione circolare via trasformata discreta di Fourier. Specifici accorgimenti permettono di ridurre gli artefatti generati da questo metodo e evitare le limitazioni imposte dal teorema del campionamento di Nyquist. Il segnale digitale viene generato a bassa frequenza e convertito in analogico mediante un dispositivo Data Acquisition (DAQ); la conversione alle tipiche frequenze degli assioni viene poi eseguita da un mixer. L’iniezione del segnale di assione sintetico in una cavità a microonde permette quindi lo studio della risposta dell’apparato sperimentale alla presenza queste ipotetiche particelle.
Segnali di assioni sintetici: un nuovo metodo per la validazione dei dati di aloscopi a cavità a microonde
VATTOLO, DAVIDE
2024/2025
Abstract
Axions, particles that may be the light constituents of the galactic dark matter halo, interact very weakly with the known particles of the Standard Model. The interaction with the electromagnetic field is the most exploited in haloscopes – detectors in which these hypothetical particles are resonantly converted into cavity photons in the presence of an intense magnetic field. In these experiments, the acquired spectral data are validated a posteriori through Monte Carlo methods during the data analysis phase. The validation techniques for microwave cavity haloscopes can be enhanced by the injection of synthetic realistic axion signals. By analyzing the spectral characteristics of axions derived from Maxwell-Boltzmann velocity distribution in the galactic halo, it is possible to generate signals that accurately mimic the narrow and asymmetric shape of the expected spectral distribution. As the axions behave as a stochastic field, the signal can be generated by shaping the spectrum of white noise. This process is carried out through Digital Signal Processing techniques, in particular with circular convolution via Discrete Fourier Transform. Specific precautions allow to reduce the artifacts generated by this method and avoid the limitation imposed by the Nyquist Sampling Theorem. The digital signal is generated at low frequency and converted to analog using a Data Acquisition (DAQ) device; the upconversion to typical axion frequencies is then performed by means of a mixer. The injection of the synthetic axion signal into a microwave cavity allows then the study of the experimental setup’s response to these hypothetical particles.| File | Dimensione | Formato | |
|---|---|---|---|
|
Vattolo_Davide.pdf
accesso aperto
Dimensione
27.34 MB
Formato
Adobe PDF
|
27.34 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/91600