Wind is a widely available renewable energy source and can be effectively used to power small electronic devices, such as sensors, especially in remote areas where extending the electrical grid is impractical and regularly replacing batteries would be too costly. The simplest system for harvesting wind energy consists of a cantilever beam with a solid body attached to its free end. The nature of the force acting on the beam strongly depends on the shape of the body. This work analyzes and models the dynamic behavior of the cantilever subjected to two aerodynamic phenomena: Vortex-Induced Vibrations (VIV), which generate a harmonic force and may bring the system into resonance at a specific wind speed, and Galloping, an aeroelastic instability that induces self-sustained oscillations in the system. The goal is to develop a model capable of predicting the system's behavior as various parameters change, mainly the model should be able to predict the qualitative behavior of the system.

Il vento rappresenta una fonte di energia rinnovabile ampiamente disponibile e può essere efficacemente impiegato per alimentare piccoli dispositivi elettronici, come sensori, specialmente in aree remote dove l'estensione della rete elettrica risulta impraticabile e la sostituzione periodica delle batterie comporterebbe costi elevati. Il sistema più semplice per convertire l'energia eolica in energia elettrica consiste in una mensola vincolata, alla cui estremità è fissato un corpo solido. La natura della forza agente sulla mensola dipende fortemente dalla forma del solido stesso. In questo elaborato si analizza e modella il comportamento dinamico della mensola soggetta a due fenomeni aerodinamici: le Vortex Induced Vibrations (VIV), che generano una forza armonica e possono portare il sistema in risonanza a una specifica velocità del vento, e il Galloping, un'instabilità aeroelastica che induce vibrazioni autoalimentate nel sistema. L'obiettivo è sviluppare un modello in grado di prevedere l'andamento del sistema al variare di diversi parametri, principalmente il modello deve essere in grado di predire qualitivamente il comportamento del sistema.

Recupero di energia dal vento attraverso l'effetto piezoelettrico

HU, CARLO
2024/2025

Abstract

Wind is a widely available renewable energy source and can be effectively used to power small electronic devices, such as sensors, especially in remote areas where extending the electrical grid is impractical and regularly replacing batteries would be too costly. The simplest system for harvesting wind energy consists of a cantilever beam with a solid body attached to its free end. The nature of the force acting on the beam strongly depends on the shape of the body. This work analyzes and models the dynamic behavior of the cantilever subjected to two aerodynamic phenomena: Vortex-Induced Vibrations (VIV), which generate a harmonic force and may bring the system into resonance at a specific wind speed, and Galloping, an aeroelastic instability that induces self-sustained oscillations in the system. The goal is to develop a model capable of predicting the system's behavior as various parameters change, mainly the model should be able to predict the qualitative behavior of the system.
2024
Energy harvesting from wind through piezoelectric effect
Il vento rappresenta una fonte di energia rinnovabile ampiamente disponibile e può essere efficacemente impiegato per alimentare piccoli dispositivi elettronici, come sensori, specialmente in aree remote dove l'estensione della rete elettrica risulta impraticabile e la sostituzione periodica delle batterie comporterebbe costi elevati. Il sistema più semplice per convertire l'energia eolica in energia elettrica consiste in una mensola vincolata, alla cui estremità è fissato un corpo solido. La natura della forza agente sulla mensola dipende fortemente dalla forma del solido stesso. In questo elaborato si analizza e modella il comportamento dinamico della mensola soggetta a due fenomeni aerodinamici: le Vortex Induced Vibrations (VIV), che generano una forza armonica e possono portare il sistema in risonanza a una specifica velocità del vento, e il Galloping, un'instabilità aeroelastica che induce vibrazioni autoalimentate nel sistema. L'obiettivo è sviluppare un modello in grado di prevedere l'andamento del sistema al variare di diversi parametri, principalmente il modello deve essere in grado di predire qualitivamente il comportamento del sistema.
Energy harvesting
Wind
Piezoelectric effect
VIV
Galloping
File in questo prodotto:
File Dimensione Formato  
Hu_Carlo.pdf

embargo fino al 23/10/2028

Dimensione 13.76 MB
Formato Adobe PDF
13.76 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/96043