Soybean (Glycine max) is severely threatened by the necrotrophic fungus Sclerotinia sclerotiorum, the causal agent of Stem Rot (SSR). Traditional control measures against this disease are not definitive. Thus, for several years, research has also turned its attention towards biotechnological solutions. Oxalic acid (OA) is one of the main virulence factors of S. sclerotiorum as it acidifies the plant tissues, promotes the action of the pathogen's lytic enzymes, and interferes with the host's defence mechanisms. This thesis analyses some innovative control measures based on the genetic modification of soybean to confer it the ability to degrade OA. The results of two different soybean genetic transformation experiments are described. The first experiment was performed by transforming soybean with the wheat gene gf2.8. This gene encodes an oxalate oxidase (OxO), an enzyme that transforms OA into carbon dioxide (CO2) and hydrogen peroxide (H2O2). The transformed plants showed reduced disease levels associated with a decrease in OA concentration and an increase in H2O2 levels in the tissues. H2O2 acts as an alarm signal for the plant, which consequently enhances its localised defence responses. In the second experiment, soybean plants were genetically transformed with a gene encoding a fungal-derived oxalate decarboxylase (OxDC). The enzyme breaks down OA into formic acid and carbon dioxide. This strategy is considered by some researchers to be more effective than the one previously described, as it neutralizes OA without producing H2O2. This avoids the risk of excessive accumulation of this reactive oxygen species, which the necrotrophic pathogen could exploit to its advantage to induce plant cell death. The transgenic lines expressing OxDC showed greater disease resistance, sometimes without developing visible lesions. In conclusion, the strategy of transforming soybean with genes encoding enzymes capable of degrading OA has proven effective in containing the disease progression caused by S. sclerotiorum. Despite the promising results, it should be noted that the application of these GMO strategies in Europe remains subject to strong regulatory limitations and faces opposition from most of the public opinion.
La soia (Glycine max) è gravemente minacciata dal fungo necrotrofico Sclerotinia sclerotiorum, agente del Marciume del Fusto (SSR). Le misure tradizionali di lotta contro questa malattia non sono risolutive. Così da vari anni, la ricerca ha rivolto la sua attenzione anche verso soluzioni biotecnologiche. L’acido ossalico (OA) è uno dei principali fattori di virulenza di S. sclerotiorum in quanto acidifica i tessuti della pianta, favorisce l’azione degli enzimi litici del patogeno e interferisce con i meccanismi di difesa dell’ospite. Questa tesi analizza alcune innovative misure di lotta basate sulla modificazione genetica della soia al fine di conferirle la capacità di degradare l’OA. Sono descritti i risultati di due diversi esperimenti di trasformazione genetica della soia. Il primo esperimento è stato eseguito trasformando soia con il gene gf2.8 di grano. Questo gene codifica per un’ossalato ossidasi (OxO), un enzima che trasforma l'OA in anidride carbonica (CO2) e perossido di idrogeno (H2O2). Le piante trasformate hanno mostrato ridotti livelli di malattia associati al decremento della concentrazione di OA e all’aumento del livello di H2O2 nei tessuti. L’H2O2 funge da segnale di allarme per la pianta che, di conseguenza, potenzia le sue risposte di difesa localizzate. Nel secondo esperimento, le piante di soia sono state trasformate geneticamente con un gene codificante un’ossalato decarbossilasi (OxDC) di origine fungina. L’enzima scompone l'OA in acido formico e anidride carbonica. Questa strategia è considerata da alcuni ricercatori più efficace rispetto a quella precedentemente descritta, poiché neutralizza l’OA senza produrre H2O2. Si evita così il rischio di un eccessivo accumulo di questa specie reattiva dell’ossigeno che il patogeno necrotrofico potrebbe sfruttare a suo vantaggio per indurre la morte delle cellule vegetali. Le linee transgeniche esprimenti la OxDC hanno mostrato una maggiore resistenza alla malattia, talvolta senza sviluppare lesioni visibili. In conclusione, la strategia di trasformare soia con geni codificanti enzimi capaci di degradare l'OA si è rivelata efficace nel contenere la progressione della malattia causata da S. sclerotiorum. Nonostante i promettenti risultati, va ricordato che l'applicazione di queste strategie OGM in Europa rimane soggetta a forti limitazioni normative e incontra la contrarietà della maggior parte dell’opinione pubblica.
La degradazione dell'acido ossalico: una strategia biotecnologica per contenere le infezioni di Sclerotinia sclerotiorum in soia.
COSTANTINI, GINEVRA
2024/2025
Abstract
Soybean (Glycine max) is severely threatened by the necrotrophic fungus Sclerotinia sclerotiorum, the causal agent of Stem Rot (SSR). Traditional control measures against this disease are not definitive. Thus, for several years, research has also turned its attention towards biotechnological solutions. Oxalic acid (OA) is one of the main virulence factors of S. sclerotiorum as it acidifies the plant tissues, promotes the action of the pathogen's lytic enzymes, and interferes with the host's defence mechanisms. This thesis analyses some innovative control measures based on the genetic modification of soybean to confer it the ability to degrade OA. The results of two different soybean genetic transformation experiments are described. The first experiment was performed by transforming soybean with the wheat gene gf2.8. This gene encodes an oxalate oxidase (OxO), an enzyme that transforms OA into carbon dioxide (CO2) and hydrogen peroxide (H2O2). The transformed plants showed reduced disease levels associated with a decrease in OA concentration and an increase in H2O2 levels in the tissues. H2O2 acts as an alarm signal for the plant, which consequently enhances its localised defence responses. In the second experiment, soybean plants were genetically transformed with a gene encoding a fungal-derived oxalate decarboxylase (OxDC). The enzyme breaks down OA into formic acid and carbon dioxide. This strategy is considered by some researchers to be more effective than the one previously described, as it neutralizes OA without producing H2O2. This avoids the risk of excessive accumulation of this reactive oxygen species, which the necrotrophic pathogen could exploit to its advantage to induce plant cell death. The transgenic lines expressing OxDC showed greater disease resistance, sometimes without developing visible lesions. In conclusion, the strategy of transforming soybean with genes encoding enzymes capable of degrading OA has proven effective in containing the disease progression caused by S. sclerotiorum. Despite the promising results, it should be noted that the application of these GMO strategies in Europe remains subject to strong regulatory limitations and faces opposition from most of the public opinion.| File | Dimensione | Formato | |
|---|---|---|---|
|
Costantini_Ginevra.pdf
Accesso riservato
Dimensione
887.49 kB
Formato
Adobe PDF
|
887.49 kB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99424