The increasing demand for sustainable and low-impact methodologies in crop monitoring has fostered the development of rapid and non-destructive techniques for crop characterization. This study investigates innovative approaches for evaluating the physiological and productive status of organically grown sugar beet, cultivated without chemical inputs, through the integrated use of unmanned aerial vehicles (UAVs) and ground-based platforms equipped with multispectral sensors and reflectance spectrometry. A range of vegetation indices (e.g., NDVI) derived from both aerial and terrestrial surveys are analyzed and correlated with in-field agronomic parameters. The primary objective is to establish robust predictive models capable of supporting agronomic decision-making and enhancing crop management practices.

La crescente domanda di metodi sostenibili e a basso impatto per il monitoraggio delle colture ha incentivato lo sviluppo di tecniche rapide e non distruttive per la caratterizzazione delle coltivazioni. In questo lavoro, si esplorano approcci innovativi per la valutazione dello stato fisiologico e produttivo della barbabietola da zucchero senza input chimici, mediante l’utilizzo combinato di droni e terminali a terra equipaggiati con sensori multispettrali e spettrometria di riflettanza. Vengono analizzati diversi indici vegetazionali (NDVI, ecc.), ottenuti dai rilievi aerei e terrestri, e correlati con parametri agronomici rilevati in campo. L’obiettivo è definire modelli predittivi affidabili per supportare le pratiche agronomiche e migliorare la gestione delle colture.

Approcci rapidi e non distruttivi per la caratterizzazione della barbabietola da zucchero biologica mediante indici vegetazionali ottenuti da drone e spettrometria

BOLZONI, MARCO
2024/2025

Abstract

The increasing demand for sustainable and low-impact methodologies in crop monitoring has fostered the development of rapid and non-destructive techniques for crop characterization. This study investigates innovative approaches for evaluating the physiological and productive status of organically grown sugar beet, cultivated without chemical inputs, through the integrated use of unmanned aerial vehicles (UAVs) and ground-based platforms equipped with multispectral sensors and reflectance spectrometry. A range of vegetation indices (e.g., NDVI) derived from both aerial and terrestrial surveys are analyzed and correlated with in-field agronomic parameters. The primary objective is to establish robust predictive models capable of supporting agronomic decision-making and enhancing crop management practices.
2024
Rapid and non-destructive approaches for the organic sugar beet characterization using vegetation indices obtained from drone imagery and leaf spectrometry
La crescente domanda di metodi sostenibili e a basso impatto per il monitoraggio delle colture ha incentivato lo sviluppo di tecniche rapide e non distruttive per la caratterizzazione delle coltivazioni. In questo lavoro, si esplorano approcci innovativi per la valutazione dello stato fisiologico e produttivo della barbabietola da zucchero senza input chimici, mediante l’utilizzo combinato di droni e terminali a terra equipaggiati con sensori multispettrali e spettrometria di riflettanza. Vengono analizzati diversi indici vegetazionali (NDVI, ecc.), ottenuti dai rilievi aerei e terrestri, e correlati con parametri agronomici rilevati in campo. L’obiettivo è definire modelli predittivi affidabili per supportare le pratiche agronomiche e migliorare la gestione delle colture.
barbabietola
biologico
drone
spettrometria
veloce
File in questo prodotto:
File Dimensione Formato  
marco-bolzoni-2-pdfa.pdf

accesso aperto

Dimensione 4.13 MB
Formato Adobe PDF
4.13 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/101635