Quantum computing deeply relies on the generation of coherent dynamics and quantum entanglement. Current quantum hardware is strongly affected by various noise sources, which ultimately result in a loss of performance. Having practical tools for evaluating hardware performance has then become a crucial challenge to benchmarking the progress of quantum processors. In this thesis, we use the dynamical localization of the quantum sawtooth map, a highly sensitive coherent phenomenon, as a tool to compare real quantum machines. We first present the quantum sawtooth map, one of the simplest models where a periodically driven system exhibits dynamical localization. Then, we describe the quantum algorithm for an efficient simulation of the quantum sawtooth map on a quantum computer. Finally, we run the quantum simulation on hardware accessible through cloud quantum programming and compare performance from different platforms.

La computazione quantistica si fonda sulla possibilità di generare dinamica coerente ed entanglement fra i quibit. Allo stato odierno i computer quantistici sono affetti da numerose fonti di rumore, le quali in definitiva ne compromettono le prestazioni. Avere a disposizione uno strumento pratico per testarne l'efficienza si è rivelata essere una delle principali sfide al fine di definire lo stato del progresso nello sviluppo di hardware quantistici. In questa tesi abbiamo sfruttato la localizzazione dinamica per la 'quantum sawtooth map', un fenomeno coerente, come strumento per comparare diversi processori quantistici. Innanzitutto presentiamo la quantum sawtooth map, uno dei modelli più semplici dove un sistema sottoposto a perturbazione periodica mostra la presenza della localizzazione dinamica. Dopodichè, descriviamo un algoritmo in grado di simulare efficacemente tale mappa su un computer quantistico. Presentiamo poi i risultati dell'implementazione di tale algorimo su computer quantistici reali, accessibili attraverso cloud, per riportare infine un confronto fra le performance ottenute nelle diverse piattaforme.

Assessment of real quantum hardware with dynamical localization

SALVADOR, ALBERTO
2022/2023

Abstract

 Quantum computing deeply relies on the generation of coherent dynamics and quantum entanglement. Current quantum hardware is strongly affected by various noise sources, which ultimately result in a loss of performance. Having practical tools for evaluating hardware performance has then become a crucial challenge to benchmarking the progress of quantum processors. In this thesis, we use the dynamical localization of the quantum sawtooth map, a highly sensitive coherent phenomenon, as a tool to compare real quantum machines. We first present the quantum sawtooth map, one of the simplest models where a periodically driven system exhibits dynamical localization. Then, we describe the quantum algorithm for an efficient simulation of the quantum sawtooth map on a quantum computer. Finally, we run the quantum simulation on hardware accessible through cloud quantum programming and compare performance from different platforms.
2022
Assessment of real quantum hardware with dynamical localization
La computazione quantistica si fonda sulla possibilità di generare dinamica coerente ed entanglement fra i quibit. Allo stato odierno i computer quantistici sono affetti da numerose fonti di rumore, le quali in definitiva ne compromettono le prestazioni. Avere a disposizione uno strumento pratico per testarne l'efficienza si è rivelata essere una delle principali sfide al fine di definire lo stato del progresso nello sviluppo di hardware quantistici. In questa tesi abbiamo sfruttato la localizzazione dinamica per la 'quantum sawtooth map', un fenomeno coerente, come strumento per comparare diversi processori quantistici. Innanzitutto presentiamo la quantum sawtooth map, uno dei modelli più semplici dove un sistema sottoposto a perturbazione periodica mostra la presenza della localizzazione dinamica. Dopodichè, descriviamo un algoritmo in grado di simulare efficacemente tale mappa su un computer quantistico. Presentiamo poi i risultati dell'implementazione di tale algorimo su computer quantistici reali, accessibili attraverso cloud, per riportare infine un confronto fra le performance ottenute nelle diverse piattaforme.
Quantum computer
Dynamical
Localization
Quantum algorithm
IBM
File in questo prodotto:
File Dimensione Formato  
Salvador_Alberto.pdf

accesso aperto

Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/45494