The complex aroma of wines is determined by the numerous volatile compounds present in the different grape varieties, mainly including terpene and aliphatic alcohols, norisoprenoid and benzenoid compounds. Most of these compounds are found in grapes in the form of glycoside (nonvolatile) derivatives usually linked to a monosaccharide or disaccharide. These compounds are not aromatic in themselves but during fermentation they can release the corresponding odorous volatile aglycones through chemical and enzymatic hydrolysis reactions. Among the different classes of compounds, terpene alcohols play a primary role as they determine the aroma of wines produced with grape varieties defined as aromatic and semi-aromatic, such as Muscat, Malvasie, Gewurztraminer, Müller-Thurgau, Riesling, Prosecco. The main analytical method used to carry out an in-depth study of the aromas of grapes consists in isolating the fraction of the glycosylated derivatives of the extract with solid-phase-extraction techniques (SPE), performing a subsequent enzymatic hydrolysis to liberate the aglycones and doing the analysis of the volatile fraction by gas chromatography/mass spectrometry (GC/MS). This method allows obtaining a detailed profile of the aroma compounds present in the sample. However, the information relating to the nature of the sugar linked to the aglycone and the complete structure of the glycosidic precursor is lost, and acidic or enzymatic hydrolysis of the extract can induce chemical artifacts that modify the sample profile. Recently, methods to study grape glycosidic aroma precursors using liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and tandem mass spectrometry (MS/MS) were developed. LC/HRMS provides the molecular formulas of the analytes, while MS/MS experiments produce fragmentation spectra from which it is possible to obtain important structural information on the molecule. LC/HRMS metabolomics approaches also use of databases (DB) specifically constructed to perform studies on individual classes of chemical compounds (e.g., anthocyanins, flavonols, stilbene compounds, etc.) by targeted approaches and help in the identification of new compounds. In particular, using the data obtained from the literature a specific DB to study glycosylated terpene precursors in grape and wines (GrapeAroma) was developed. In this work, the potential of the DB is presented and discussed, and the various LC/MS methods proposed in the literature are compared to identify the most effective which, coupled with the use of GrapeAroma, can allow the differentiation of the numerous isomers of these compounds present in grape.
Il complesso aroma dei vini è determinato dai numerosi composti volatili presenti nelle diverse varietà di uve, comprendenti principalmente alcoli monoterpenici ed alifatici, composti norisoprenoidi e benzenoidi. La maggior parte di questi composti si trova nell’uva in forma di derivati glicosidati (non volatili) solitamente legati ad un monosaccaride o disaccaride. Tali composti non sono di per sé aromatici ma durante la fermentazione possono liberare i corrispondenti agliconi volatili odorosi attraverso reazioni di idrolisi chimiche ed enzimatiche. Tra le diverse classi di composti, gli alcoli monoterpenici sono di elevato interesse in quanto determinano l’aroma dei vini prodotti con varietà di uve aromatiche e semi-aromatiche, quali Moscati, Malvasie, Riesling, Gewurztraminer, Prosecco, ecc. Il principale metodo analitico utilizzato per effettuare uno studio approfondito degli aromi dell’uva consiste nell’isolare la frazione dei derivati glicosidati dell’estratto con tecniche di estrazione SPE (Solid-Phase-Extraction), operare una successiva idrolisi enzimatica di liberazione degli agliconi ed effettuare l’analisi della frazione volatile mediante gascromatografia/spettrometria di massa (GC/MS). Tale metodo consente di ottenere un profilo dettagliato degli aromi presenti nel campione, viene però persa l’informazione relativa al residuo zuccherino legato all’aglicone e alla struttura del precursore glicosidico. Inoltre, l’idrolisi acida o enzimatica può indurre artefatti chimici che modificano il profilo aromatico del campione. Recenti sviluppi analitici per lo studio dei precursori aromatici glicosidati utilizzano la cromatografia liquida accoppiata alla spettrometria di massa ad alta risoluzione (LC/HRMS) e la spettrometria di massa tandem (MS/MS). La spettrometria LC/HRMS consente di risalire alle formule molecolari degli analiti, mentre gli esperimenti MS/MS producono gli spettri di frammentazione da cui è possibile ricavare importanti informazioni strutturali sulla molecola. Gli attuali approcci di metabolomica LC/HRMS vedono inoltre l’utilizzo di database costruiti specificatamente per effettuare studi targeted/untargeted sulle singole classi dei composti chimici (es. antociani, flavonoli, composti stilbenici, ecc.) e possono consentire l’identificazione di nuovi composti. Scopo di questa tesi è sviluppare un database di precursori monoterpenici glicosidati utilizzando i dati ricavati dalla letteratura scientifica che può essere utilizzato negli studi di metabolomica LC/HRMS. Sono inoltre indagate le diverse metodiche LC/MS proposte in letteratura al fine di individuare le più efficaci che, accoppiate all’utilizzo del database, possono consentire di differenziare i numerosi isomeri di questa classe di composti aromatici presenti nell’uva.
Sviluppo di un database per l’identificazione dei precursori aromatici glicosidati dell’uva mediante cromatografia liquida accoppiata alla spettrometria di massa ad alta risoluzione
CAMPANER, CHIARA
2022/2023
Abstract
The complex aroma of wines is determined by the numerous volatile compounds present in the different grape varieties, mainly including terpene and aliphatic alcohols, norisoprenoid and benzenoid compounds. Most of these compounds are found in grapes in the form of glycoside (nonvolatile) derivatives usually linked to a monosaccharide or disaccharide. These compounds are not aromatic in themselves but during fermentation they can release the corresponding odorous volatile aglycones through chemical and enzymatic hydrolysis reactions. Among the different classes of compounds, terpene alcohols play a primary role as they determine the aroma of wines produced with grape varieties defined as aromatic and semi-aromatic, such as Muscat, Malvasie, Gewurztraminer, Müller-Thurgau, Riesling, Prosecco. The main analytical method used to carry out an in-depth study of the aromas of grapes consists in isolating the fraction of the glycosylated derivatives of the extract with solid-phase-extraction techniques (SPE), performing a subsequent enzymatic hydrolysis to liberate the aglycones and doing the analysis of the volatile fraction by gas chromatography/mass spectrometry (GC/MS). This method allows obtaining a detailed profile of the aroma compounds present in the sample. However, the information relating to the nature of the sugar linked to the aglycone and the complete structure of the glycosidic precursor is lost, and acidic or enzymatic hydrolysis of the extract can induce chemical artifacts that modify the sample profile. Recently, methods to study grape glycosidic aroma precursors using liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and tandem mass spectrometry (MS/MS) were developed. LC/HRMS provides the molecular formulas of the analytes, while MS/MS experiments produce fragmentation spectra from which it is possible to obtain important structural information on the molecule. LC/HRMS metabolomics approaches also use of databases (DB) specifically constructed to perform studies on individual classes of chemical compounds (e.g., anthocyanins, flavonols, stilbene compounds, etc.) by targeted approaches and help in the identification of new compounds. In particular, using the data obtained from the literature a specific DB to study glycosylated terpene precursors in grape and wines (GrapeAroma) was developed. In this work, the potential of the DB is presented and discussed, and the various LC/MS methods proposed in the literature are compared to identify the most effective which, coupled with the use of GrapeAroma, can allow the differentiation of the numerous isomers of these compounds present in grape.File | Dimensione | Formato | |
---|---|---|---|
Campaner_Chiara.pdf
accesso riservato
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/56145