In the context of quantum simulation, one of the main research focuses is the capability of arranging and coherently manipulating large quantum many-body states. Recent experiments are showing an ever-growing improvement in their capabilities, allowing the direct observation of unprecedented quantum phenomena. A prototypical example is given by the realization of so-called "Schrödinger's cat" states, formed by the coherent superposition of two macroscopically different quantum many-body states. This experiment has been recently realized using Rydberg atoms (“Generation and manipulation of Schrödinger cat states in Rydberg atom arrays”, Omran et al., Science 365, 570-574 (2019)), which, due to their great versatility, are considered a particularly promising candidate for quantum simulation and computation experiments. In parallel with experimental improvements, several software have been developed to design and optimize the experimental protocols by controlling the experimental platform parameters. In this thesis, by taking inspiration from the aforementioned publication, we use the software Qruise, a commercial optimization platform, to design experimental quantum protocols to generate Greenberger-Horne-Zeilinger (GHZ) states on a one-dimensional Rydberg atoms array.
Nel contesto della simulazione quantistica, uno dei principali focus di ricerca è la capacità di ordinare e manipolare coerentemente grandi stati quantistici a molti corpi. Recenti esperimenti mostrano un sempre crescente miglioramento nelle loro capacità, permettendo l’osservazione diretta di fenomeni quantistici senza precedenti. Un prototipo è dato dalla realizzazione dei cosiddetti “gatti di Schrödinger”, stati quantistici formati dalla sovrapposizione coerente di due stati quantistici a molti corpi. Questo esperimento è stato di recente realizzato utilizzando atomi di Rydberg (“Generation and manipulation of Schrödinger cat states in Rydberg atom arrays”, Omran et al., Science 365, 570-574 (2019)), i quali, grazie alla loro grande versatilità, sono considerati candidati particolarmente promettenti per esperimenti di computazione e simulazione quantistica. In parallelo con gli sviluppi sperimentali, sono stati sviluppati diversi software per progettare e ottimizzare i protocolli sperimentali controllando i parametri dell’esperimento. In questa tesi, prendendo ispirazione dalla suddetta pubblicazione, usiamo Qruise, un software commerciale di ottimizzazione, per progettare protocolli sperimentali quantistici per generare stati di Greenberger-Horne-Zeilinger (stati GHZ) su una stringa monodimensionale di atomi di Rydberg.
Dinamiche ottimali di stringhe di atomi di Rydberg
SCHIAVINATO, ALBERTO
2022/2023
Abstract
In the context of quantum simulation, one of the main research focuses is the capability of arranging and coherently manipulating large quantum many-body states. Recent experiments are showing an ever-growing improvement in their capabilities, allowing the direct observation of unprecedented quantum phenomena. A prototypical example is given by the realization of so-called "Schrödinger's cat" states, formed by the coherent superposition of two macroscopically different quantum many-body states. This experiment has been recently realized using Rydberg atoms (“Generation and manipulation of Schrödinger cat states in Rydberg atom arrays”, Omran et al., Science 365, 570-574 (2019)), which, due to their great versatility, are considered a particularly promising candidate for quantum simulation and computation experiments. In parallel with experimental improvements, several software have been developed to design and optimize the experimental protocols by controlling the experimental platform parameters. In this thesis, by taking inspiration from the aforementioned publication, we use the software Qruise, a commercial optimization platform, to design experimental quantum protocols to generate Greenberger-Horne-Zeilinger (GHZ) states on a one-dimensional Rydberg atoms array.File | Dimensione | Formato | |
---|---|---|---|
Schiavinato_Alberto.pdf
accesso aperto
Dimensione
3.03 MB
Formato
Adobe PDF
|
3.03 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/61007