The main aim of this thesis is to address a question, recently raised in the literature, whether the existence of particles carrying a magnetic charge (instead of an electric one) is consistent with physical laws of Nature. Such particles are called monopoles. The possibility that they may exist in Nature was suggested by Dirac. The Dirac showed that for the monopoles to obey the laws of electrodynamics, to each of them there should be attached a magnetic flux string, called the Dirac string. This string must be invisible, i.e. un-physical. This requirement lead to the famous Dirac quantization condition for the electric and magnetic charges. There however appeared claims in a recent literature that the Dirac string cannot be invisible and therefore, according to the authors, the Dirac monopoles cannot exist as elementary particles. In this thesis the classical theory of magnetic monopoles is studied in both Lagrangian and Hamiltonian formulation of electrodynamics, and its extension to quantum mechanics is also considered. This investigation ultimately confirms that the Dirac string is an auxiliary non- physical tool and the Dirac theory of monopoles provides a consistent description of these exotic particles.
L'obiettivo principale di questa tesi è esaminare una questione recentemente sollevata nella letteratura scientifica, ovvero se l'esistenza di particelle portatrici di carica magnetica (invece che elettrica) sia conforme alle leggi fisiche della Natura. Tali particelle vengono denominate monopoli. Dirac suggerì la possibilità che potessero esistere in Natura, dimostrando che, affinché i monopoli rispettino le leggi dell'elettrodinamica, a ciascuno di essi deve essere associata una stringa magnetica, detta stringa di Dirac. Questa stringa deve essere invisibile, ovvero non fisica. Questo requisito porta alla famosa condizione di quantizzazione di Dirac per le cariche elettriche e magnetiche. Tuttavia, in articoli più recenti sono emerse affermazioni secondo le quali la stringa di Dirac non può essere invisibile e, quindi, secondo gli autori, i monopoli di Dirac non possono esistere come particelle elementari. In questa tesi verrà studiata la teoria classica dei monopoli magnetici sia nella formulazione Lagrangiana che Hamiltoniana dell'elettrodinamica, considerandone anche l'estensione alla meccanica quantistica. Questa indagine confermerà in ultima analisi che la stringa di Dirac è uno strumento ausiliario non fisico e che la teoria di Dirac dei monopoli offre una descrizione coerente di queste particelle esotiche.
La stringa di Dirac è reale?
SCAPOLO, PIETRO
2023/2024
Abstract
The main aim of this thesis is to address a question, recently raised in the literature, whether the existence of particles carrying a magnetic charge (instead of an electric one) is consistent with physical laws of Nature. Such particles are called monopoles. The possibility that they may exist in Nature was suggested by Dirac. The Dirac showed that for the monopoles to obey the laws of electrodynamics, to each of them there should be attached a magnetic flux string, called the Dirac string. This string must be invisible, i.e. un-physical. This requirement lead to the famous Dirac quantization condition for the electric and magnetic charges. There however appeared claims in a recent literature that the Dirac string cannot be invisible and therefore, according to the authors, the Dirac monopoles cannot exist as elementary particles. In this thesis the classical theory of magnetic monopoles is studied in both Lagrangian and Hamiltonian formulation of electrodynamics, and its extension to quantum mechanics is also considered. This investigation ultimately confirms that the Dirac string is an auxiliary non- physical tool and the Dirac theory of monopoles provides a consistent description of these exotic particles.File | Dimensione | Formato | |
---|---|---|---|
Scapolo_Pietro.pdf
accesso aperto
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/64687