Climate changes are increasingly putting the primary sector to the test, with sudden temperature changes and the alternation of dry periods with periods of abundant rainfall. These new problems also have a direct effect on the agri-food sector, affecting the quality of raw materials but above all the management of food safety. Among the crops most affected are cereal crops, which play a very important role in human and animal nutrition. A problem that is increasingly emerging is that of the increase in contamination of food products by mycotoxins such as aflatoxin B1, which if ingested by lactating animals undergoes a biotransformation creating its secondary metabolite, aflatoxin M1. Aflatoxin B1 is considered one of the most toxic mycotoxins. Aflatoxin B1 is considered one of the most toxic mycotoxins. Aflatoxin M1 maintains high toxicity, causing problems of aflatoxicosis, genotoxicity and carcinogenicity in consumers if taken in quantities higher than the legal limits. Over the years, limits have been imposed at community level, and in general at global level, for the food safety of consumers. In Europe the limit imposed for aflatoxin M1 in milk and dairy products is 0.05 µg/kg. Due to the potential serious effects on health, the IARC has included them in (group 2b) which includes substances considered to be possible carcinogens for humans. Following the introduction of the limits mentioned and the discovery of the problems that these mycotoxins can cause, the need arose to quantify their presence through specific analyses. Conventional techniques include liquid chromatography coupled to a mass spectrometer or a fluorometer or immunochemical tests such as ELISA, efficient methods but which have disadvantages compared to some emerging techniques due to their costs, timing and/or sensitivity. Among the emerging strategies, two in particular will be explored in depth in this work: one involves the creation of a microfluidic device for the detection of aflatoxin M1 through the use of specific aptamers and the development of a colorimetric reaction, the other proposes the use of structure-switched aptamers using the fluorescence-coupled quenching-dequenching mechanism to examine the presence of aflatoxin.

I cambiamenti climatici stanno mettendo sempre più a dura prova il settore primario, con improvvisi sbalzi termici e l’avvicendarsi di periodi siccitosi a periodi con abbondanti precipitazioni. Queste nuove problematiche hanno un effetto diretto anche sul settore agroalimentare andando a colpire la qualità delle materie prime ma soprattutto la gestione della sicurezza alimentare. Tra le colture maggiormente colpite troviamo quelle cerealicole, che svolgono un ruolo importantissimo per l’alimentazione umana ed animale. Una problematica che si sta sempre più manifestando è quella dell’aumento della contaminazione dei prodotti alimentari da parte di micotossine come l’aflatossina B1, la quale se ingerita da animali in lattazione subisce una biotrasformazione creando un suo metabolita secondario, l’aflatossina M1. L’aflatossina B1 è considerata una delle micotossine più tossiche. L’aflatossina M1 mantiene elevata tossicità causando problemi di aflatossicosi, genotossicità e cancerogenicità nei consumatori se assunta in quantità più elevate rispetto ai limiti di legge. Negli anni sono stati imposti dei limiti a livello comunitario, e in generale a livello mondiale, per la sicurezza alimentare dei consumatori. In Europa il limite imposto per l’aflatossina M1 nel latte e nei prodotti caseari è di 0,05 µg/kg. Per i potenziali gravi effetti per la salute, lo IARC le ha inserite nel (gruppo 2b) nel quale sono raggruppate sostanze ritenute possibili cancerogeni per l’uomo. Inseguito all’introduzione dei limiti citati e alla scoperta delle problematiche che possono causare queste micotossine è sorta la necessità di andare a quantificare attraverso specifiche analisi la loro presenza. Tra le tecniche convenzionali vi sono la cromatografia liquida accoppiata ad uno spettrometro di massa o ad un fluorometro o test immunochimici quali l’ELISA, metodiche efficienti ma che presentano degli svantaggi rispetto ad alcune tecniche emergenti a causa dei loro costi, tempistiche e/o sensibilità. Tra le strategie emergenti, due in particolare verranno approfondite in questo lavoro: una prevede la realizzazione di un dispositivo microfluidico per la rilevazione dell’aflatossina M1 mediante l’utilizzo di aptameri specifici e lo sviluppo di una reazione colorimetrica, l’altra propone l’utilizzo di aptameri a commutazione di struttura utilizzando il meccanismo di quenching-dequenching accoppiato alla fluorescenza per esaminare la presenza dell’aflatossina.

NUOVI METODI DI RILEVAMENTO DELL' AFLATOSSINA M1 NEL LATTE MEDIANTE L'USO DI APTAMERI ACCOPPIATI A FLUORESCENZA E REAZIONI COLORIMETRICHE

SOVILLA, EMANUELE
2023/2024

Abstract

Climate changes are increasingly putting the primary sector to the test, with sudden temperature changes and the alternation of dry periods with periods of abundant rainfall. These new problems also have a direct effect on the agri-food sector, affecting the quality of raw materials but above all the management of food safety. Among the crops most affected are cereal crops, which play a very important role in human and animal nutrition. A problem that is increasingly emerging is that of the increase in contamination of food products by mycotoxins such as aflatoxin B1, which if ingested by lactating animals undergoes a biotransformation creating its secondary metabolite, aflatoxin M1. Aflatoxin B1 is considered one of the most toxic mycotoxins. Aflatoxin B1 is considered one of the most toxic mycotoxins. Aflatoxin M1 maintains high toxicity, causing problems of aflatoxicosis, genotoxicity and carcinogenicity in consumers if taken in quantities higher than the legal limits. Over the years, limits have been imposed at community level, and in general at global level, for the food safety of consumers. In Europe the limit imposed for aflatoxin M1 in milk and dairy products is 0.05 µg/kg. Due to the potential serious effects on health, the IARC has included them in (group 2b) which includes substances considered to be possible carcinogens for humans. Following the introduction of the limits mentioned and the discovery of the problems that these mycotoxins can cause, the need arose to quantify their presence through specific analyses. Conventional techniques include liquid chromatography coupled to a mass spectrometer or a fluorometer or immunochemical tests such as ELISA, efficient methods but which have disadvantages compared to some emerging techniques due to their costs, timing and/or sensitivity. Among the emerging strategies, two in particular will be explored in depth in this work: one involves the creation of a microfluidic device for the detection of aflatoxin M1 through the use of specific aptamers and the development of a colorimetric reaction, the other proposes the use of structure-switched aptamers using the fluorescence-coupled quenching-dequenching mechanism to examine the presence of aflatoxin.
2023
NEW METHODS OF DETECTION OF AFLATOXIN M1 IN MILK THROUGH THE USE OF APTAMERS COUPLED WITH FLUORESCENCE AND COLORIMETRIC REACTIONS
I cambiamenti climatici stanno mettendo sempre più a dura prova il settore primario, con improvvisi sbalzi termici e l’avvicendarsi di periodi siccitosi a periodi con abbondanti precipitazioni. Queste nuove problematiche hanno un effetto diretto anche sul settore agroalimentare andando a colpire la qualità delle materie prime ma soprattutto la gestione della sicurezza alimentare. Tra le colture maggiormente colpite troviamo quelle cerealicole, che svolgono un ruolo importantissimo per l’alimentazione umana ed animale. Una problematica che si sta sempre più manifestando è quella dell’aumento della contaminazione dei prodotti alimentari da parte di micotossine come l’aflatossina B1, la quale se ingerita da animali in lattazione subisce una biotrasformazione creando un suo metabolita secondario, l’aflatossina M1. L’aflatossina B1 è considerata una delle micotossine più tossiche. L’aflatossina M1 mantiene elevata tossicità causando problemi di aflatossicosi, genotossicità e cancerogenicità nei consumatori se assunta in quantità più elevate rispetto ai limiti di legge. Negli anni sono stati imposti dei limiti a livello comunitario, e in generale a livello mondiale, per la sicurezza alimentare dei consumatori. In Europa il limite imposto per l’aflatossina M1 nel latte e nei prodotti caseari è di 0,05 µg/kg. Per i potenziali gravi effetti per la salute, lo IARC le ha inserite nel (gruppo 2b) nel quale sono raggruppate sostanze ritenute possibili cancerogeni per l’uomo. Inseguito all’introduzione dei limiti citati e alla scoperta delle problematiche che possono causare queste micotossine è sorta la necessità di andare a quantificare attraverso specifiche analisi la loro presenza. Tra le tecniche convenzionali vi sono la cromatografia liquida accoppiata ad uno spettrometro di massa o ad un fluorometro o test immunochimici quali l’ELISA, metodiche efficienti ma che presentano degli svantaggi rispetto ad alcune tecniche emergenti a causa dei loro costi, tempistiche e/o sensibilità. Tra le strategie emergenti, due in particolare verranno approfondite in questo lavoro: una prevede la realizzazione di un dispositivo microfluidico per la rilevazione dell’aflatossina M1 mediante l’utilizzo di aptameri specifici e lo sviluppo di una reazione colorimetrica, l’altra propone l’utilizzo di aptameri a commutazione di struttura utilizzando il meccanismo di quenching-dequenching accoppiato alla fluorescenza per esaminare la presenza dell’aflatossina.
Aflatossina M1
Rilevamento
Latte
Aptameri
File in questo prodotto:
File Dimensione Formato  
Sovilla_Emanuele (1).pdf

accesso riservato

Dimensione 590.53 kB
Formato Adobe PDF
590.53 kB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/73002