In recent decades, dairy production has achieved substantial gains in productivity; however, this progress has also introduced new responsibilities and constraints. Today, farmers must reconcile higher yields with animal welfare, reduced environmental impact, particularly lower greenhouse gas emissions, and the assurance of food safety. Traditional agricultural practices have long ensured the availability of animal-derived products, but population growth and rising demand have driven increased stocking densities and the adoption of more intensive husbandry methods, with consequent environmental and health implications. Precision Livestock Farming (PLF) emerges in this context as a technological and managerial approach capable of enhancing both efficiency and sustainability on farms. PLF integrates sensors, monitoring systems and analytical tools to collect individual-level data on milk yield and composition, physiological status (Body Condition Score), metabolic and behavioral parameters, and environmental conditions such as temperature and humidity (THI). Real-time processing of these data enables detailed, animal-specific insight and supports timely, targeted management decisions. The application of PLF is particularly valuable during the transition period, defined as the weeks immediately before and after calving, when dairy cows undergo profound metabolic and physiological changes. During this phase the risk of metabolic disorders (for example ketosis, ruminal acidosis and abomasal displacement) increases, with negative consequences for health, fertility and productivity. Early detection of subclinical signs, often undetectable by routine observation, allows preventive or corrective interventions that mitigate disease severity, improve animal welfare and reduce management costs.
Negli ultimi decenni la zootecnia da latte ha registrato importanti progressi produttivi, questa crescita ha però, messo in luce nuove responsabilità e vincoli. Al giorno d’oggi, gli allevatori devono coniugare l’aumento delle rese con la tutela del benessere animale, la riduzione dell’impatto ambientale, in particolare delle emissioni di gas serra e, la garanzia della sicurezza alimentare per il consumatore. Le pratiche agricole tradizionali hanno sempre garantito la disponibilità di prodotti di origine animale per la popolazione mondiale ma, l’incremento demografico e la conseguente crescente domanda, hanno imposto un aumento delle densità d’allevamento e l’adozione di tecniche di allevamento intensive, con inevitabili conseguenze ambientali e sanitarie. In questo contesto, la zootecnia di precisione, si propone come approccio tecnologico e gestionale in grado di migliorare l’efficienza e la sostenibilità degli allevamenti. Questa pratica integra nelle aziende agricole, sensori, sistemi di monitoraggio e strumenti analitici per raccogliere dati individuali su produzione lattea (quantità e composizione), stato fisiologico ( Body Condition Score), parametri metabolici e comportamentali, nonché condizioni ambientali come temperatura e umidità (THI). Queste informazioni, elaborate in tempo reale, permettono di ottenere una visione dettagliata e personalizzata di ciascun capo, permettendo di prendere decisioni gestionali tempestive e mirate. Particolarmente utile è l’impiego di queste pratiche durante il periodo di transizione delle bovine da latte, periodo che corrisponde alle settimane immediatamente precedenti e successive al parto e nel quale, le bovine affrontano profondi cambiamenti metabolici e fisiologici. In questa fase aumentano il rischio e l’incidenza di patologie metaboliche come ad esempio la chetosi, l’acidosi ruminale, lo spostamento dell’abomaso e molte altre, condizioni che possono compromettere salute, fertilità e produttività dell’animale. La possibilità di identificare segnali precoci, spesso non evidenti all’osservazione diretta, consente interventi preventivi o correttivi che riducono la gravità delle patologie, migliorano il benessere animale e ottimizzano i costi di gestione.
Previsione dell'ingestione alimentare e dello stato energetico della vacca da latte nelle prime fasi di lattazione
PELLIZZARI, MATTEO
2024/2025
Abstract
In recent decades, dairy production has achieved substantial gains in productivity; however, this progress has also introduced new responsibilities and constraints. Today, farmers must reconcile higher yields with animal welfare, reduced environmental impact, particularly lower greenhouse gas emissions, and the assurance of food safety. Traditional agricultural practices have long ensured the availability of animal-derived products, but population growth and rising demand have driven increased stocking densities and the adoption of more intensive husbandry methods, with consequent environmental and health implications. Precision Livestock Farming (PLF) emerges in this context as a technological and managerial approach capable of enhancing both efficiency and sustainability on farms. PLF integrates sensors, monitoring systems and analytical tools to collect individual-level data on milk yield and composition, physiological status (Body Condition Score), metabolic and behavioral parameters, and environmental conditions such as temperature and humidity (THI). Real-time processing of these data enables detailed, animal-specific insight and supports timely, targeted management decisions. The application of PLF is particularly valuable during the transition period, defined as the weeks immediately before and after calving, when dairy cows undergo profound metabolic and physiological changes. During this phase the risk of metabolic disorders (for example ketosis, ruminal acidosis and abomasal displacement) increases, with negative consequences for health, fertility and productivity. Early detection of subclinical signs, often undetectable by routine observation, allows preventive or corrective interventions that mitigate disease severity, improve animal welfare and reduce management costs.| File | Dimensione | Formato | |
|---|---|---|---|
|
Pellizzari_Matteo.pdf
Accesso riservato
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93948