Since its arrival in the European continent in the late 1800s, Plasmopara viticola has been one of the most serious diseases affecting viticulture. Copper has been widely used to prevent infection, especially in aeras where climatic conditions are favourable to the development and proliferation of the pathogen. Nowadays, modern chemistry has found new molecules to counteract downy mildew; however, the use of copper has persisted among winegrowers, especially those who practice organic viticulture, where it is the only truly effective active ingredient permitted by law. Excessive use of copper in viticulture causes it to accumulate in the soil, on vegetation and on grape clusters. During harvesting, the copper deposits on the grapes inevitably end up in the must, where they interact directly with the compounds in the must, forming complexes whit amino acids, pectins, certain polyphenols, and sulphur molecules. It also promotes the oxidation of the must compounds, resulting in changes in the colour, smell, and taste of the wine, causing a decline in quality. The copper present in the must affects also with the yeast involved in alcoholic fermentation, interacting whit the cell wall and the membrane and entering the cell. This cause imbalances in the yeast and, due to its redox cycle, produces ROS that degenerate cell membranes and proteins. This has a negative effect on the alcoholic fermentations, as it affects the growth and the metabolism of microorganisms. Since the interactions between copper and certain compounds present in the must cause a lower availability of the metal, it was decided for this project to carry out alcoholic fermentation in a synthetic growth medium, free of complexing agents, where the copper can show its toxicity to yeast even at low concentrations. For the test, it was decided to use the synthetic must defined by the OIV and six yeasts, selected from a previous work, which had shown different sensitivities to the presence of copper. These were fermented at three different temperatures: 16°C, 18°C, and 20°C. At the end of fermentation, the production of acetaldehyde, acetic acid, and sulphur dioxide was analysed. The presence of copper caused slowdowns in alcoholic fermentation, and in all fermentations, acetaldehyde always showed an increase in the presence of copper; as a result, total sulphur dioxide also had higher values. Acetic acid, on the other hand, only increased for some yeasts, and its production was higher at low temperature. All these results show how copper in synthetic must has a negative effect on the fermentation rate and yeast metabolism.
La Plasmopara viticola, fin dal suo arrivo nel continente europeo alla fine del 1800, rappresenta una delle più gravi ampelopatie in viticoltura. Nel prevenire le sue infezioni, è stato ampiamente usato il rame, soprattutto nelle zone dove le condizioni climatiche sono risultate favorevoli allo sviluppo e proliferazione del patogeno. Oggigiorno, la chimica moderna ha trovato nuove molecole nel contrasto della peronospora; tuttavia, l’uso del rame è sempre persistito tra i viticoltori, soprattutto tra chi pratica la viticoltura biologica, dove è l’unico principio attivo realmente efficace ammesso dalla normativa. L’uso eccessivo del rame in viticoltura provoca un suo accumulo nel suolo, sulla vegetazione e sui grappoli. Durante le operazioni di vendemmia, il deposito di rame presente sulle uve finisce inevitabilmente all’interno del mosto: qui, si hanno delle interazioni dirette con i composti del mosto, formando complessi con aminoacidi, pectine, alcuni polifenoli e molecole solforate; promuove, inoltre, le ossidazioni dei composti del mosto con conseguente modifica di colore, odore e gusto del vino, causandone uno scadimento qualitativo. Il rame presente nel mosto interagisce anche con i lieviti della fermentazione alcolica, interagendo con parete e membrana cellulare ed entrando all’interno della cellula. Così, esso causa degli squilibri per il lievito e, per via del suo ciclo redox, produce ROS che degenerano le membrane cellulari e le proteine. Tutto questo influisce negativamente sulla fermentazione alcolica, poiché incide sulla crescita e sul metabolismo dei microrganismi. Dato che le interazioni tra il rame e alcuni composti presenti nel mosto causano una minor disponibilità del metallo, si è scelto, per questo progetto, di eseguire la fermentazione alcolica in un mezzo di crescita sintetico, privo di agenti complessanti, e dove il rame può mostrare anche a basse concentrazioni la sua tossicità nei confronti dei lieviti. Per la prova, è stato scelto, quindi, di utilizzare il mosto sintetico proposto dall’OIV con sei lieviti, selezionati da un lavoro precedente, che hanno dimostrato diverse sensibilità alla presenza di rame. Questi, sono stati fatti fermentare a tre temperature diverse: 16°C, 18°C e 20°C. Al termine della fermentazione è stata analizzata la produzione di acetaldeide, acido acetico e anidride solforosa. La presenza di rame ha causato dei rallentamenti della fermentazione alcolica e, in tutte le fermentazioni, l’acetaldeide ha mostrato sempre un incremento in presenza di rame; di conseguenza, anche l’anidride solforosa totale ha dei valori più alti. L’acido acetico, invece, aumenta solamente per alcuni lieviti e la sua produzione è maggiore a basse temperature. Tutti questi risultati danno prova di come il rame, in mosto sintetico, possieda un effetto negativo sulla velocità di fermentazione e sul metabolismo dei lieviti.
L'effetto della presenza di rame sulla fermentazione alcolica in mosto sintetico
RUPIL, MARCO
2024/2025
Abstract
Since its arrival in the European continent in the late 1800s, Plasmopara viticola has been one of the most serious diseases affecting viticulture. Copper has been widely used to prevent infection, especially in aeras where climatic conditions are favourable to the development and proliferation of the pathogen. Nowadays, modern chemistry has found new molecules to counteract downy mildew; however, the use of copper has persisted among winegrowers, especially those who practice organic viticulture, where it is the only truly effective active ingredient permitted by law. Excessive use of copper in viticulture causes it to accumulate in the soil, on vegetation and on grape clusters. During harvesting, the copper deposits on the grapes inevitably end up in the must, where they interact directly with the compounds in the must, forming complexes whit amino acids, pectins, certain polyphenols, and sulphur molecules. It also promotes the oxidation of the must compounds, resulting in changes in the colour, smell, and taste of the wine, causing a decline in quality. The copper present in the must affects also with the yeast involved in alcoholic fermentation, interacting whit the cell wall and the membrane and entering the cell. This cause imbalances in the yeast and, due to its redox cycle, produces ROS that degenerate cell membranes and proteins. This has a negative effect on the alcoholic fermentations, as it affects the growth and the metabolism of microorganisms. Since the interactions between copper and certain compounds present in the must cause a lower availability of the metal, it was decided for this project to carry out alcoholic fermentation in a synthetic growth medium, free of complexing agents, where the copper can show its toxicity to yeast even at low concentrations. For the test, it was decided to use the synthetic must defined by the OIV and six yeasts, selected from a previous work, which had shown different sensitivities to the presence of copper. These were fermented at three different temperatures: 16°C, 18°C, and 20°C. At the end of fermentation, the production of acetaldehyde, acetic acid, and sulphur dioxide was analysed. The presence of copper caused slowdowns in alcoholic fermentation, and in all fermentations, acetaldehyde always showed an increase in the presence of copper; as a result, total sulphur dioxide also had higher values. Acetic acid, on the other hand, only increased for some yeasts, and its production was higher at low temperature. All these results show how copper in synthetic must has a negative effect on the fermentation rate and yeast metabolism.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi Rupil.pdf
accesso aperto
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94007